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SUMMARY

The purpose of this study is to better understand steady flow in three-dimensional non-planar double bend
geometries which are chosen to loosely model a right coronary or femoral artery, neglecting branches.
The knowledge gained from idealized geometries can subsequently be applied to anatomically correct
geometries. The three-dimensional computations of steady flows in planar and non-planar double bends
at Reynolds numbers of 125 and 500 were performed using a high accuracy, spectral/hp element Navier–
Stokes solver. In this study, we analyse the haemodynamics in terms of various mechanical factors (i.e. axial
velocity, secondary flows, vorticity and coherent vortical structures). Although the effects of curvature and
non-planarity on the flows are complex and often non-intuitive, from the numerical results, we can simplify
and anticipate the secondary flow patterns, and by associations the wall shear stress distribution, in various
double bend geometries with different non-planarities at physiological Reynolds number (100�Re�500).
Non-planarity has the biggest effects on mixing and swirling of flow as observed through the coherent
vortical structures and asymmetric secondary flow streamlines. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is broadly accepted that local haemodynamic factors play a critical role in the genesis, devel-
opment and distribution of atherosclerosis and cardiovascular disease. Atherosclerosis can occur
anywhere in arteries but is particularly prevalent on the inner wall of curved arteries and the outer
wall of bifurcations. Cholesterol level [1–5], obesity, diet, smoking [6], drinking, diabetes [7] and
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renal failure [8] are examples of systemic risk factors implicated in atherogenesis, re-stenoses
of bypass graft. Among various risk factors, the concentration of cholesterol in blood has been
considered the most important factor since the plaques are rich in lipid [1–3], and this has been
studied experimentally in various animals by feeding them with a diet containing cholesterol [4, 5].

None of these risk factors, however, can explain the focal nature of atherosclerotic lesions.
Haemodynamic factors can explain the distribution of atherosclerotic lesions within the arteries
and, for this reason, it is broadly accepted that local haemodynamic factors play a critical role
in conjunction with systemic risk factors to produce localized disease, genesis, development and
distribution of arterial disease. It is therefore important to understand fluid dynamic factors such
as flow behaviour, velocity patterns and wall shear distribution.

Many researchers have investigated pressure, velocity distributions, velocity gradient and the
influence of steady and unsteady shear stresses and the gradient of wall shear stress in steady or
unsteady flows on the wall or on the blood cell in vascular configurations [9–11]. These mechanical
factors are involved in the accumulation of lipids, a cause of atherosclerosis. The effect of curvature
was investigated for steady and laminar flow through a planar curved pipe analytically by Dean
[12–14] and experimentally by John [15, 16]. Other analyses have been carried out for three-
dimensional laminar flow through planar circular pipes with particular variations of curvature.
Some authors have reported various numerical and experimental studies for a planar double reverse
curved arterial geometry to suggest that lesion location at the inner curvature may be associated
with secondary flows near the inner curvature [17–20].

Most previous works, however, assume the flows to be planar and/or two dimensional, whereas
flows in vessels are commonly non-planar and three dimensional. There is a growing belief that the
non-planarity of blood vessels can have a major influence on local haemodynamics in circulatory
flows. As has been described in the review by Caro et al. [21], many investigators have focused on
the non-planarity influence on flows in specific arterial locations: aortic arch [22–28], branching of
superficial coronary arteries [29–31], bifurcation of aorta [32], branching of femoral artery [33],
distal femoral artery [34, 35], idealized non-planar bifurcations [36, 37] and carotid siphon [38].
However, few studies have reported on the effect of non-planarity in non-branching vessels [20].

The purpose of this study of steady flow is to better understand the effects of geometrical
configurations on the flow in double bend geometries which are chosen to loosely model a right
coronary artery or a femoral artery, neglecting branches. The knowledge gained from idealized
geometries can subsequently be applied to anatomically correct geometries such as a right coronary
artery, femoral arteries or even double bend shaped bypass grafts caused by the occlusion of
proximal host vessel. It may be also valuable in future investigations into the mechanisms of plaque
vulnerability and the risk of atherosclerotic narrowing in non-branch vessels. Numerical models
can be readily modified to study the effects of a given parameter such as the non-planar angles or
artery diameter. Further, this simulation could greatly reduce the costs of predicting the relationship
between blood flow and geometrical characteristics compared to experiments. In this study, we
investigate the effect of non-planarity and curvature in non-planar, non-branched double-curved
arterial geometries with an ‘s’ shape. In addition to axial velocity, we also present the secondary
flow patterns and the coherent vortical structure as measured by the �2 flow isocontours [39].

2. NUMERICAL MODELS AND ASSUMPTIONS

Steady flow in double bends is studied in the series of idealistic geometries shown in Figure 1.
The diameter (D) of the bend and the radius (R) of curvature of the bends (R = 2D) were chosen
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Figure 1. (a) 180◦ model; (b) all five models; (c) 0◦ model; (d) 135◦ model;
(e) 90◦ model; and (f) 45◦ model.

to correspond to physiologically realistic vessels, particularly the right coronary artery. The CFD
model consists of a straight inflow region, a double bend of two consecutive reverse quarters
toroidal bends. In non-planar models, the second consecutive toroidal bend has the same radius of
curvature but lies out of the plane of curvature of the original bend with azimuthal angles � = 45◦,
�= 90◦ and �= 135◦ as shown in Figures 1(f), (e) and (d) respectively. The straight outlet region
is of length 8D. In addition, we consider two other models which lie in the same plane; the second
bend of the 0◦ model, as shown in Figure 1(c), has opposite curvature to the original bend in a
single plane and the other planar model is a single U-bend which we refer to as the 180◦ model,
as shown in Figure 1(a). By comparing flows in the three non-planar models against flows in the
standard planar double bends, we will identify the effect of non-planarity. Steady flow in a curved
tube is characterized by both the Reynolds number and the Dean number (4

√
D/RRe). In these

five models, steady flow was studied at Reynolds number 125 and 500 (Dean number D = 354 and
1414), which correspond to the Reynolds number in medium sized human arteries based on the
mean and peak velocity numerical models [40]. We make the following assumptions: Newtonian
blood flow and negligible effect of distensibility of the arterial walls. The boundary conditions
are: no-slip on the pipe wall, zero velocity gradients and zero pressure at the outlet and Poiseuille
velocity profile at the inflow.

3. NUMERICAL METHODOLOGY

The mesh generation was accomplished with an advancing front method [41]. A modified advancing
layers method was employed near the pipe wall to generate a prismatic boundary layer mesh and
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then the advancing front method was applied to construct a mesh for the rest of the domain
from the boundary layer towards its interior by a three-dimensional tetrahedral volume mesh [41].
The numerical simulations have been performed using an incompressible Navier–Stokes equation
solver, which is based on spectral/hp element discretization in space [42]. This discretization
uses hybrid-shaped spectral elements and a hierarchical expansion basis, which produces well-
conditioned matrix systems for high-order polynomial expansions.

We take the governing incompressible Navier–Stokes equations,

f (u) =−�u
�t

− u · ∇u − ∇ p + �∇2u= 0

with the continuity requirement

∇ · u= 0

where u is the three-dimensional velocity field, p is the fluid kinematic pressure and � is the
kinematic viscosity. The starting point for the spectral/hp element method is the approximation
of the differential equation which is formulated into an integral form with respect to the scheme
expansion basis (i.e. a Galerkin projection), such that

∫
�

w( f (u�) − f (u)) d�= 0 (1)

where �, w, u� and u denote the solution domain, weighted functions, approximated solutions
and exact solutions, respectively. The resulting integro-differential equation is then approximated

h–type mesh

p–type expansion

Figure 2. Spectral/hp element discretization using h-type macro-elements and p-type
Jacobi-based polynomial expansions. The modes shown here are representative of a

fourth-order expansion within each tetrahedral element.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:519–529
DOI: 10.1002/fld



STEADY FLOW IN NON-PLANAR DOUBLE BENDS 523

in space as

u� =
Ndof −1∑
i=0

�iui =
Nel∑
e=0

O(P3)∑
p=0

�e
pu

e
p

where �i and �i denotes the global mode and the local mode of basis functions or expansion
functions. Substitution of this approximation into Equation (1) leads to a linear algebraic system
which can be solved to obtain the coefficients ui .

A spectral/hp element discretization is a high-order discretization methods combining both h-
type and p-type refinement methods where the number of sub-domains and polynomial order within
the elements can be independently varied. In this study, a modal hybrid spectral/hp element method
was applied based upon Jacobi-family polynomial as shown in Figure 2. The solutions in the non-
planar double bend geometries are computed on mesh with approximately 1500 spectral elements
with P = 5th-, 8th- and 10th-order polynomial expansions, which corresponds to a maximum of
52 500, 180 000 and 330 000 local degrees of freedom per variable.

4. DATA ANALYSIS TECHNIQUE FOR VORTICAL STRUCTURES

Vortical motion in coherent structures helps us to understand separated flow phenomena like
entrainment and mixing, heat and mass transfer [43]. Jeong and Hussain introduced a �2 definition
of a vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor S2+�2 to
obtain a better indicator for the existence of a vortex [39]. Coherent vortical structure corresponds
to the region of negative �2, where �2 is the second largest eigenvalue of S2 + �2, where S and
� are the symmetric and anti-symmetric parts of the velocity gradient tensor ∇u, i.e.

S = 1
2 [∇u + (∇u)T], � = 1

2 [∇u − (∇u)T]

Physically, the individual tensor S represents stretching whilst the tensor � represents rotation.

5. RESULTS AND DISCUSSIONS

We will now consider the steady flow at Re= 125 and 500 in the five idealized geometries using a
combination of velocity and vorticity sectional profiles and the vortical structure technique outlined
in Section 4. The sections of interest are highlighted in Figure 3. All of the slices for the contours
of axial velocity, transverse flow and vorticity are oriented so that they appear to an observer on
the start of the vessel looking downstream. In Figure 3(b), we also highlight the orientations of
each cross-section for a non-planar model (in this case, the 90◦ model). In displaying the sectional
data, we display point A at the top of each cross-section. However as seen in Figure 3(b) when
we traverse along the pipe, the location of point A within each circular cross-section will rotate in
proportion to the angle of the model. So in the 90◦ model, point A along the outflow pipe is rotated
by a quarter turn (i.e. 90◦) with respect to the sectional data at the inflow. Similarly in the 180◦
model at the outflow, the sectional data should be physically interpreted as being rotated by half a
turn (180◦).

In Figure 4 we show the 0◦ model case. The isocontour on the right shows the �2 isocon-
tour in this geometry at Re= 125. Also shown in this figure are a series of axial velocities

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:519–529
DOI: 10.1002/fld



524 K. E. LEE ET AL.

Figure 3. (a) Cross-sections evaluated in double bend geometries and (b) physical orientation of each
section: points A and B follow a continuous line along the geometry, therefore these datum points will rotate

within the section by the same amount as the angle associated with the model, in this case 90◦.

Figure 4. 0◦ model: the isocontour show the �2 coherent vortex structure at Re= 125, highlighting the
two Dean vortex patterns set up in each quarter bend. The inset sections correspond to the numbering in
Figure 3(a). The top and bottom series of slices show axial velocity at Re= 125 and 500, respectively.

with transverse streamlines indicated. The top series of slices is at Re= 125 and the bottom
series of slices is at Re= 500. The location of each section (as numbered) is shown in
Figure 3.
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Figure 5. 45◦ model, Re= 125 500: the isocontour shows the �2 coherent vortex structure
highlighting the vortex patterns in each quarter bend. The inset sections correspond to the
numbering in Figure 3(a). The top two slices are axial velocity at Re= 125 and 500, respectively.

The bottom slices show axial vorticity at Re= 500.

Initially considering Sections 1–4 which are within the first-quarter toroidal bend, we observe
that two counter rotating vortices are established, these are the well-known Dean’s vortices [14].
Directly associated with these secondary vortices is a displacement of the axial velocity profile
towards the outside of the bend due to the centripetal force associated with the toroidal geometry.
This type of pattern is established in the first bend of all configurations. However the increase in
Reynolds number, which necessarily also increases the Dean number leads to a more energetic
secondary flow and a larger associated crescent shape in the axial flow profile.

Sections 5–9 of Figure 4 show the sectional profile during the second bend where the curvature
has now been reversed. We observe that the reverse curvature of the second bend first overcomes
the initial Dean vortex pattern of the first bend and then establishes a new Dean vortex pattern
(of opposite rotation) by Section 9. This is also shown in the �2 isocontour. A similar trend is
seen at both Re= 125 and R = 500. This is in contrast to the work of Pitt [44] where a double
bend of similar curvature of radius but only a 45◦ sweep angle (i.e. an eighth of a toroidal bend)
was investigated. With a reduced sweep angle at a Reynolds number of Re= 500, the initial Dean
vortices were able to overcome the influence of the second bend.

In Figure 5, we show similar data to that in Figure 4 but for the 45◦ model geometry again at
Re= 125 and 500. In this configuration, a similar Dean vortex pattern is established in the first
bend. However when we introduce a 45◦ non-planarity during the second bend, the rotation of the
non-planar bend enhances one of the Dean vortices and diminishes the other. This is particularly
evident in the �2 isocontour for the Re= 125 case where we observe that one of the Dean vortices
within the outflow region is longer than the other.

It is interesting to note that increasing the Reynolds number (and implicitly the Dean number)
reduces the asymmetry of the �2 isocontours within the outflow and leading to a similar type
pattern to the �2 isocontour shown in Figure 4. However, the axial vorticity plots shown in the
bottom series in Figure 5 demonstrate that mixing is still present at this Reynolds number. The
initial rotation of the vortices is indicated in the plot of Section 4.
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Figure 6. 90◦ model, Re= 125: the isocontour shows the �2 coherent vortex structure
highlighting the two Dean vortex patterns set up in each quarter bend. The inset sections

correspond to the numbering in Figure 3(a).

Figure 7. 180◦ model, Re= 500: the isocontour shows the �2 coherent vortex structure highlighting the
two Dean vortex patterns set up in each quarter bend. The inset sections show the axial velocity (top)

and vorticity (bottom) and the numbering is consistent with Figure 3(a).

We next continue to increase the non-planarity and consider the 90◦ geometry as shown in
Figure 6 at Re= 125. Unlike the 45◦ model at this Reynolds number, shown in Figure 5, we
observe that the Dean vortices do not show the asymmetry in the �2 pattern. Although we observe
some realignment of the first bend Dean vorticity between Sections 4 and 5 very rapidly the second
toroidal bend establishes a Dean vortex pattern consistent with the bend’s curvature. By Section 8
two Dean vortices are established and we note that point A is now located at the top of the outflow
branch making the vortices consistent with the �2 isocontours.

The next level of non-planarity was the 135◦ model which has similar dynamics to those as
observed in the 45◦ model and so we shall not consider it further here. In Figure 7 however we
consider the 180◦ model. This model is a half a toroidal geometry and therefore is analogous to a
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classical Dean flow throughout the geometry. One significant point of interest at Re= 500 however
is highlighted in the secondary flow patterns between Sections 4 and 6 where we observe that the
strength of the primary Dean vortices are sufficient to lead to secondary eruption of vorticity from
the wall which is also wrapped around the primary vortices to create an internal set of vortices. A
tertiary set of vorticies can also be observed in secondary streamlines at the bottom of Sections 4
and 5. As we progress down the pipe, the vortices merge and annihilate leaving a weaker set of
vortices at the pipe outflow.

6. CONCLUSIONS

The steady flow patterns observed in the idealized non-planar double bend geometries at Re= 125
and 500 have been investigated by consideration of how the primary and the transverse flows are
affected by curvature, non-planarity and Reynolds number. The analysis highlights the complex and
sometimes intricate secondary flow patterns which are possible within these types of configurations
at physiologically relevant parameters.

During the first-quarter toroidal, a Dean vortex pattern is established. In the planar configurations
investigated, we observed that in the double bend (0◦ model) the local curvature of each separate
bend ultimately dictates the Dean pattern in each bend. Within the half-toroidal (180◦) model, we
observed the generation of secondary and tertiary vortex pattern at Re= 500 due to a boundary
layer eruption promoted through the strength of the primary vortices.

The introduction of 45◦ and 135◦ non-planarity cause a strengthening of one of the Dean
vortices and associated weakening of the other vortex. Increasing the Reynolds number in these
configurations leads to a more rapid realignment of the vortices and a more symmetric Dean vortex
configuration during the outflow region. A larger degree of non-planarity, as in the 90◦ model, does
not enhance this mechanism but rather leads to a more symmetric Dean vortex patterns. Therefore
as a final conclusion, we note that there appears to be an optimal non-planar angle to achieve
asymmetry in the Dean vortex pattern.
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